Search results for "quantum geometry"
showing 9 items of 9 documents
The Segre embedding of the quantum conformal superspace
2018
In this paper study the quantum deformation of the superflag Fl(2|0, 2|1,4|1), and its big cell, describing the complex conformal and Minkowski superspaces respectively. In particular, we realize their projective embedding via a generalization to the super world of the Segre map and we use it to construct a quantum deformation of the super line bundle realizing this embedding. This strategy allows us to obtain a description of the quantum coordinate superring of the superflag that is then naturally equipped with a coaction of the quantum complex conformal supergroup SL_q(4|1).
Quantum geometry and microscopic black hole entropy
2006
9 pages, 6 figures.-- PACS nrs.: 04.60.Pp, 04.70.Dy.-- ISI Article Identifier: 000242448900013.-- Published online on Nov 28, 2006.
Statistical Thermodynamics of Polymer Quantum Systems
2011
Polymer quantum systems are mechanical models quantized similarly as loop quantum gravity. It is actually in quantizing gravity that the polymer term holds proper as the quantum geometry excitations yield a reminiscent of a polymer material. In such an approach both non-singular cosmological models and a microscopic basis for the entropy of some black holes have arisen. Also important physical questions for these systems involve thermodynamics. With this motivation, in this work, we study the statistical thermody- namics of two one dimensional polymer quantum systems: an ensemble of oscillators that describe a solid and a bunch of non-interacting particles in a box, which thus form an ideal…
Composite quantum collision models
2017
A collision model (CM) is a framework to describe open quantum dynamics. In its {\it memoryless} version, it models the reservoir $\mathcal R$ as consisting of a large collection of elementary ancillas: the dynamics of the open system $\mathcal{S}$ results from successive "collisions" of $\mathcal{S}$ with the ancillas of $\mathcal R$. Here, we present a general formulation of memoryless {\it composite} CMs, where $\mathcal S$ is partitioned into the very open system under study $S$ coupled to one or more auxiliary systems $\{S_i\}$. Their composite dynamics occurs through internal $S$-$\{S_i\}$ collisions interspersed with external ones involving $\{S_i\}$ and the reservoir $\mathcal R$. W…
The Quantum Scalar Field in Spherically Symmetric Loop Quantum Gravity
2013
We consider the quantization of a spherically symmetric gravitational system coupled to a massless scalar field within the loop quantum gravity framework. Our results rely on the uniform discretizations method developed during the last years. We minimize the associated discrete “master constraint” using a trial state whose gravitational part is peaked around the classical Schwarzschild solution.
Black hole state counting in loop quantum gravity: a number-theoretical approach
2008
4 pages, 1 figure.-- PACS nrs.: 04.70.Dy, 04.60.Pp.-- ArXiv pre-print available at: http://arxiv.org/abs/0802.4077
Reply to Comment on Measurement of quantum states of neutrons in the Earth's gravitational field
2003
Physical review / D 68(10), 108702 (2003). doi:10.1103/PhysRevD.68.108702
Quantum Mechanics of Point Particles
2013
In developing quantum mechanics of pointlike particles one is faced with a curious, almost paradoxical situation: One seeks a more general theory which takes proper account of Planck’s quantum of action \(h\) and which encompasses classical mechanics, in the limit \(h\rightarrow 0\), but for which initially one has no more than the formal framework of canonical mechanics. This is to say, slightly exaggerating, that one tries to guess a theory for the hydrogen atom and for scattering of electrons by extrapolation from the laws of celestial mechanics. That this adventure eventually is successful rests on both phenomenological and on theoretical grounds.
Space-Time Symmetries in Quantum Physics
2013
The transformations in space and in time which belong to the Galilei group play an important role in quantum theory. In some respect and for some aspects, their role is new as compared to classical mechanics.